Kempopeptins A and B, Serine Protease Inhibitors with Different Selectivity Profiles from a Marine Cyanobacterium, *Lyngbya* sp.

Kanchan Taori,[†] Valerie J. Paul,[‡] and Hendrik Luesch*,[†]

Department of Medicinal Chemistry, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32610, and Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949

Received April 3, 2008

Two cyclodepsipeptides named kempopeptins A (1) and B (2) were isolated from a collection of a Floridian marine cyanobacterium, *Lyngbya* sp., that had previously afforded the structurally related potent elastase inhibitors lyngbyastatin 7 and somamide B. The structures of 1 and 2 were elucidated mainly by 1D and 2D NMR spectroscopy, and the absolute configuration was established by chiral HPLC and Marfey's analysis of the degradation products. Kempopeptin A (1) exhibited an IC₅₀ against elastase of 0.32 μ M and against chymotrypsin of 2.6 μ M, while kempopeptin B (2) inhibited trypsin with an IC₅₀ of 8.4 μ M.

N-Me-Ty

Marine cyanobacteria biosynthesize a plethora of structurally distinct bioactive secondary metabolites.¹ Several of these natural products have been shown to be protease inhibitors.² Since proteases are involved in a variety of biological processes, and many proteases are validated drug targets,3 the discovery of new protease modulators is important to the development of pharmacological tools as well as potential therapeutics. We recently reported the isolation of potent elastase inhibitors, lyngbyastatins 4-7, from Floridian cyanobacteria.^{4,5} The lyngbyastatin 7 producer Lyngbya sp., collected at Kemp Channel in the Florida Keys, which also produces another elastase inhibitor, somamide B,⁵ now afforded two more serine protease inhibitors, to which we assigned the trivial names kempopeptin A (1) and kempopeptin B (2). Their discovery proves the potential of a single cyanobacterium to exhibit an array of serine protease inhibitory activities, but also raises questions about the role of protease inhibitors in the marine environment. Protease inhibitors are known to be co-biosynthesized with the microcystin cyanobacterial toxins;⁶ in fact, metabolites other than microcystins have been shown to enhance microcystin activity.⁷ The biosynthesis of protease inhibitors in nontoxic cyanobacterial strains has precedence as well.8 Here we report the isolation, structure elucidation, and protease-inhibitory activity of compounds 1 and 2 from a nontoxic cyanobacterium.

The cyanobacterium *Lyngbya* sp. was collected from Kemp Channel, a mangrove channel southwest of Summerland Key in the Florida Keys. The sample was freeze-dried and extracted with CH_2Cl_2 -MeOH (1:1). This extract was partitioned with organic solvents followed by various chromatographic steps using silica and C_{18} and ultimately reversed-phase HPLC to yield compounds 1 and 2.

Kempopeptin A (1) was obtained as a colorless, amorphous solid and shown to have the molecular formula of $C_{50}H_{70}N_8O_{13}$ as determined by HRESI/APCIMS based on a $[M + Na]^+$ peak at m/z of 1013.4965 (calcd for $C_{50}H_{70}N_8O_{13}Na$, 1013.4960). The presence of a peptide backbone was evident from the ¹H NMR spectrum recorded in DMSO- d_6 due to a tertiary amide *N*-Me 3H singlet at δ 2.75 and characteristic secondary amide NH resonances occurring as one 1H doublet at δ 7.06 and eight 0.5H doublets at δ 7.42–8.40. The differential integration was suggestive of conformers in only one part of the molecule (Table 1). The combination of ¹H and ¹³C NMR, COSY, HMQC, HMBC, and TOCSY data revealed the presence of valine, *N*-methyltyrosine,

[†] University of Florida.

ò нс Phe Leu Ahp Kempopeptin A (1) N.O-diMe-Br-Tv Val-1 Val-2 Ba NH₂ Lys Ahp Kempopeptin B (2) 0 ò NH₂ Abu

Val

Thr-1

Pro

Thr-2

Lyngbyastatin 7 $R = (CH_2)_4 CH_3$ Somamide B $R = (CH_2)_2 CH_3$

phenylalanine, leucine, proline, and two threonine residues, the modified amino acid 3-amino-6-hydroxy-2-piperidone (Ahp), and an acetyl group, with signal doubling for the two threonine moieties, proline, the acetyl group, and exchangeable protons of valine and leucine residues. HMBC analysis established the sequence including the planar structure depicted for **1**. The doubling of the ¹H NMR signals in the side chain was attributed to restricted rotation around the *N*-acetyl prolyl amide bond on the basis of ROESY cross-peaks between H-2 of proline ($\delta_{\rm H}$ 4.52) and the acetyl protons ($\delta_{\rm H}$ 1.83) for the *cis* isomer and between H-5b of proline ($\delta_{\rm H}$ 3.47) and the acetyl protons ($\delta_{\rm H}$ 1.95) in the *trans* isomer. A 1:1 ratio of *cis* and *trans* isomers in DMSO-*d*₆ around the *N*-acetyl–prolyl bond was also reported for the most closely related metabolite, oscillapeptilide 97-B,⁹ which contains an isoleucine instead of the valine in the

40.75 © 2008 American Chemical Society and American Society of Pharmacognosy Published on Web 08/12/2008

^{*} To whom correspondence should be addressed. Tel: (352) 273-7738. Fax: (352) 273-7741. E-mail: luesch@cop.ufl.edu.

^{*} Smithsonian Marine Station.

Table 1. NMR Data for Both Conformers of Kempopeptin A (1) in DMSO-d₆ (ratio 1:1) at 500 MHz (¹H) and 150 MHz (¹³C)

$ \begin{array}{ $			<i>trans</i> conformer ^a		<i>cis</i> conformer ^{<i>a</i>}			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	unit	C/H no.	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$, mult.	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$, mult.	$\mathrm{HMBC}^{b,c}$	key ROESY ^c
Network 13, 4, CH 20, 8, m 30, CH 24, 5 NAMe (NMe-Tyr) NM 7, 43, 6 (02) 172, CH 030, d (65) 172, CH 173, CH NMe (NMe-Tyr) NMe (NMe-Tyr) NMe (NMe-Tyr), NMe (N-Me-Tyr),	Val	1 2	4.65, dd (9.2, 4.5)	172.1, qC 55.8, CH	4.64, dd (9.5, 4.5)	172.1, qC 55.8, CH	1, 3, 4, 5, 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	2.04 m	21.9 CH	2.04 m	20.9 CH	(N-Me-Tyr)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3 4	2.04, m 0.85 d (6.5)	19.5 CH	2.04, m 0.84 d (6.5)	10.3, CH	2, 4, 5	N-Me (N-Me-Tyr)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	0.71, d (6.5)	17.2. CH ₃	0.70. d (6.5)	17.2. CH ₃	2, 3, 3	N-Me (N-Me-Tyr)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NH	7.43, d (9.2)	17.2, 0113	7.42, d (9.5)	17.2, 0113	1 (<i>N</i> -Me-Tyr)	H-2 (N-Me-Tyr), N-Me (N-Me-Tyr),
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								6-OH (Ahp)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>N</i> -Me-Tyr	1	4.90 + 1/(10 < 1.5)	169.1, qC	4.00 + 1/(10 - 1.5)	169.1, qC		$\mathbf{H} 2_{\mathbf{r}} \mathbf{N} \mathbf{M}_{\mathbf{r}} \mathbf{H} 2 (\mathbf{D}_{\mathbf{r}}) \mathbf{H} 5 (0 (\mathbf{D}_{\mathbf{r}}))$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	4.89, dd (10.6, 1.5)	60.9, CH	4.89, dd (10.6, 1.5)	60.9, CH		H-3a, <i>N</i> -Me, H-2 (Pne), H-3/9 (Pne),
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3a	3.10, dd (-13, 10.6)	32.8, CH ₂	3.10, dd (-13, 10.6)	32.8, CH ₂	4, 5/9	H-2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3b	2.69, dd (-13, 1.5)		2.69, dd (-13, 1.5)		4, 5/9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4		127.5, qC		127.5, qC	2 5/0 5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5/9	6.99, d (8.5)	130.4, CH	6.99, d (8.5)	130.4, CH	3, 5/9, 7	N-Me, H-2 (Phe)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0/8 7	0.77, d (8.5)	115.5, CH	0.77, d (8.5)	115.5, CH 156.2 aC	4, 0/8, /	
M-Me2.75, s30.3, CH2.1, 1(Ph)1.2, H-39, H,-4 (Val), H2, Wal), MI (Val)Phe1-104, qC170, 4, C170, C <td>, 7-ОН</td> <td>9.35, s</td> <td>150.2, qC</td> <td></td> <td>150.2, qC</td> <td>6/8,7</td> <td></td>		, 7-ОН	9.35, s	150.2, qC		150.2, qC	6/8,7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		N-Me	2.75, s	30.3, CH ₃	2.75, s	30.3, CH ₃	2, 1 (Phe)	H-2, H-5/9, H ₃ -4 (Val),
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								H ₃ -5 (Val), NH (Val)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Phe	1	(115 12)	170.4, qC	172 11 (11 5 1 2)	170.4, qC	$1.2(Ahr) \in (Ahr)$	\mathbf{H} 2h \mathbf{H} 5/0 \mathbf{H} 2 (N Ma Tur)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Z	4.75, dd (11.5, 4.5)	50.5, Сп	4.75, dd (11.5, 4.5)	50.5, Сп	1, 2 (Anp), 0 (Anp)	H_{-50} , $H_{-5/9}$, H_{-2} (<i>N</i> -Me-1yr), H_{-6} (Abp)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3a	2.85. dd (-13.8. 11.5)	35.3. CH ₂	2.85. dd (-13.8, 11.5)	35.3. CH ₂	2.4	11-579 (IV-IVIC-191), 11-0 (Aup)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3b	1.77, dd (-13.8, 4.3)	2	1.77, dd (-13.8, 4.3)		2, 4	H-2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4		136.7, qC		136.7, qC		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5/9	6.82, d (7.0)	129.4, CH	6.82, d (7.0)	129.4, CH	3, 5/9, 6/8	H-2, H-2 (<i>N</i> -Me-Tyr)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6/8	7.15, m	127.7, CH	7.15, m	127.7, CH	4,7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	7.12, m	126.2, CH	7.12, m	126.2, CH	5/9, 6/8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Anp	2	2.61 m	168.9, qC	2.61 m	168.9, qC	2	H 4h H 5a NH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3 49	2 37 m	48.0, СП 21.7 СНа	2.01, III 2.37 m	46.0, СП 21.7 СНа	2	п-40, п-3а, Nп H-4b, 6-ОН NH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4b	1.55. m	21.7, CH2	1.55. m	21.7, CH		H-3. H-4a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5a	1.66, m	29.0, CH ₂	1.66, m	29.3, CH ₂		H-3, H-5b, H-6, 6-OH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5b	1.54, m	, –	1.54, m	· -		H-5a, H-6, 6-OH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	5.05, br s	73.7, CH	5.05, br s	73.7, CH		H-5a, H-5b, 6-OH, H-2 (Phe)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6-OH	6.02, br s		6.02, br s		1 (T)	H-4a, H-5a, H-5b, H-6, NH (Val)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lau	NH 1	7.06, d (9.1)	170 1 aC	7.06, d (9.1)	170.1 aC	I (Leu)	H-3, H-4a, H-2 (Leu)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Leu	2	/ 10 m	50.3 CH	/ 10 m	50.3 CH		H_{-32} H_{2-5} NH NH (Ahn)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2 3a	1.70, m	40.0. CH ₂	1.70, m	40.0. CH ₂	5,6	H-2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3b	1.28, m	,2	1.28, m		-,-	NH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	1.44, m	23.3, CH	1.44, m	23.3, CH		NH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	0.70, d (6.4)	20.9, CH ₃	0.70, d (6.4)	20.9, CH ₃	3, 4, 6	H-2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	0.83, d (6.4)	$21.5, CH_3$	0.83, d (6.4)	21.5, CH ₃	3, 4, 5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	The 1	NH 1	8.40, d (8.7)	160.2 gC	8.39, d (8.8)	160.2 aC	1 (Thr-1)	H-2, H-3b, H-4, H-2 (Thr-1), H-3 (Thr-1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1111-1	$\frac{1}{2}$	4 58 dd (9 1 2 1)	54.6 CH	4.60 dd (9.1, 2.0)	54.6 CH	$1 1 (\text{Thr}_{-}2)$	Ha-4 NH (Leu)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	5.38 br a (6.4)	72.0 CH	5.39 br a (6.4)	72.0. CH	1, 1 (111-2) 1 (Val)	NH (Len)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	1.18, d (6.4)	17.7, CH ₃	1.17, d (6.4)	17.7, CH ₃	1 () ()	1(11(1))
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NH	7.62, d (9.1)		7.75, d (9.1)		1 (Thr-2)	H-2 (Thr-2), H-3 (Thr-2), H ₃ -4 (Thr-2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Thr-2	1		170.7, qC		170.6, qC		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	4.30, dd (8.2, 4.1)	58.1, CH	4.39, dd (8.4, 4.2)	58.0, CH	1	NH (Thr-1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	4.03, m 1.02 t (6.7)	66.5, CH	4.03, m	10.2 CH		NH (1nr-1) NH (Thr. 1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		он ОН	4.86 d (5.1)	19.2, CH ₃	4.96 d (5.4)	19.3, CH ₃		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NH	7.91, d (8.2)		8.12, d (8.4)		1 (Pro)	H-2 (Pro)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pro	1		172.3, qC		172.1, qC		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	4.44, dd (8.4, 2.8)	58.9, CĤ	4.52, dd (8.6, 2.9)	60.1, CĤ		NH (Thr-2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3a	2.05, m	29.3, CH ₂	2.23, m	29.5, CH ₂		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3b	1.90, m	04.2 CTT	1.93, m	04.1 017		
$3a$ 5.51 , iii 47.0 , CH_2 5.40 , iii 40.3 , CH_2 $5b$ 3.47 , m 3.38 , m 3.38 , m Ac 1 168.7 , qC 168.5 , qC 2 1.95 , s 22.0 , CH ₃ 1.83 , s 22.2 , CH ₃ 1 $H-2^d$ (Pro) ^{cis} or H_2-5^e (Pro) ^{trans}		4 50	1.89, m 2.51 m	24.3, CH ₂	1./0, m 2.40 m	24.1, CH ₂		
Ac1168.7, qC168.5, qC21.95, s22.0, CH ₃ 1.83, s22.2, CH ₃ 1		5a 5h	3.31, III 3.47 m	+7.0, CH ₂	3.40, III 3.38 m	+0.5, CΠ ₂		
2 1.95, s 22.0, CH ₃ 1.83, s 22.2, CH ₃ 1 $H-2^{d}$ (Pro) ^{<i>cis</i>} or H ₂ -5 ^{<i>e</i>} (Pro) ^{<i>trans</i>}	Ac	1	5. 17, 111	168.7. aC	5.50, 11	168.5. aC		
		2	1.95, s	22.0, CH ₃	1.83, s	22.2, CH ₃	1	H-2 ^d (Pro) ^{cis} or H ₂ -5 ^e (Pro) ^{trans}

^{*a*} Refers to restricted rotation around the *N*-acyl-prolyl amide bond. ^{*b*} Protons showing HMBC correlations to the indicated carbon. ^{*c*} Refers to nuclei within the same unit unless indicated otherwise. ^{*d*} Refers to *cis* isomer. ^{*e*} Refers to *trans* isomer.

cyclic core and a glutamine rather than the threonine-2 residue in the side chain.

Acid hydrolysis followed by modified Marfey's analysis¹⁰ established the L-configuration of all amino acid residues, while deciphering the Ahp configuration (3S,6R) required prior CrO₃ oxidation and additionally ROESY analysis of the intact molecule (Table 1) as previously described.^{4,5} The assignment was also consistent with the nearly identical NMR data for kempopeptin A

(1) and oscillapeptilide 97-B,⁹ suggesting that the relative configurations including the conformation of the cyclic core are the same for both compounds.

Kempopeptin B (2) was obtained as a colorless, amorphous powder. The HRESI/APCIMS data showed a $[M + H]^+$ peak at *m*/*z* 993.4663 and an isotope peak of approximately equal intensity at *m*/*z* 995.4656, indicating the presence of one bromine atom and a molecular formula of C₄₆H₇₃BrN₈O₁₁ (calcd for C₄₆H₇₄⁷⁹BrN₈O₁₁)

Table 2. NMR Data for Kempopeptin B (2) in DMSO-d₆ at 600 MHz (¹H) and 150 MHz (¹3C)

unit	C/H no.	$\delta_{\rm H}$ (<i>J</i> in Hz)	δ_{c} , mult.	COSY ^a	HMBC ^{b,c}	kev ROESY ^{<i>a,c</i>}
Val-1	1	• 11 (• • • • • • • • • • • • • • • • •	172.3 aC			
v al=1	2	4 63 dd (9 4 5 5)	54.8 CH	H-3 NH	$1 1 (N O_{-} diMe_{-} Br_{-} Tyr)$	
	3	2.04 m	30.5 CH	H_{2-4} H_{2-5}	1 2 4 5	
	4	0.85 d (6.8)	19.3 CH ₂	H_3	2 3 5	N-Me (NO -diMe-Br-Tyr)
	5	0.03, d(0.0)	17.6 CH ₂	H-3	2, 3, 5	N-Me (N O-diMe-Br-Tyr)
	NH	7 68 d (9 4)	17.0, CH3	H-2	1 (N O - di Me - Br - Tvr)	H-2 (N O-diMe-Br-Tyr)
	1,11	7.00, u (). 1)		11 2		<i>N</i> -Me (<i>N</i> , <i>O</i> -diMe-Br-Tyr), 6-OH (Ahp)
N,O-diMe-Br-Tyr	1		169.4, gC			5 // 1 /
	2	5.03, dd (11.3, 2.6)	60.6, CH	H-3a, H-3b	3	H-3a, H-5, H-9, N-Me, H-2 (Ile),
			,	,		NH (Val-1)
	3a	3.20, dd (-12.0, 2.6)	32.9, CH ₂	H-2, H-3b		H-2, H-5
	3b	2.78, dd (-12.0, 11.3)		H-2, H-3a		
	4		131.3, qC			
	5	7.39, d (1.8)	133.5, CH	H-9	3, 6, 7, 9	H-2, H-3a, N-Me, H-2 (Ile)
	6		111.0, CH			
	7		154.6, qC			
	8	7.01, d (8.4)	113.0, CH	H-9	4, 6, 7	
	9	7.17, dd (8.4, 1.8)	130.2, CH	H-5, H-8	3, 5, 7	H-2
	O-Me	3.74, s	56.1, CH ₃		7	
	N-Me	2.72, s	30.2, CH ₃		2, 1 (Ile)	H-2, H-5, H ₃ -4 (Val-1),
						H ₃ -5 (Val-1), NH (Val-1)
Ile	1		169.7, qC			
	2	4.35, br d (10.7)	54.2, CH	H-3	1, 3, 6 (Ahp)	H-3, H-5, H ₃ -6, H-2 (<i>N</i> -Me-Br-Tyr),
						H-5 (<i>N</i> , <i>O</i> -diMe-Br-Tyr)
	3	1.79, m	32.8, CH	H-2, H-4a, H-4b, H ₃ -6		H-2
	4a	1.0, m	$23.7, CH_2$	H-3, H-4b, H ₃ -5		
	4b	0.629, m	10.2 CH	H-3, H-4a, H ₃ -5	2.4	
	5	0.630, br t (6.9)	$10.3, CH_3$	H-4a, H-4b	3, 4	H-2
4.1	6	-0.15, d (6.4)	13.8, CH ₃	H-3	2, 3, 4	H-2
Ahp	2	4.42	170.4," qC	II 4. II 41. NIII		
	3	4.42, m	48.8, CH	H-4a, H-4b, NH		H-40, H-3, NH
	4a 4b	2.33, III 1.71 m	$21.7, CH_2$	Π -5, Π -40, Π -5		$\Pi - 40, 0 - 0\Pi, \Pi \Pi$
	40 5	1.71, III 1.72 m (211)	20.7 CH.	Π -3, Π -4a, Π -3		п-3, п-4а Ц 2 Ц 6
	6	1.73, m(211) 1.02, d(2.0)	29.7, CH ₂	H-5 6-0H		H-5, 6-0H
	6-0H	6.15 d(2.9)	/ 4 .1, CH	H-6		H_{-4a} H_6 NH (Val-1)
	NH	7.34 d (9.3)		H-3		H-3 $H-4a$ $H-2$ (Lys)
Lys	1	7.5 I, U (7.5)	$169.3^{d} aC$	11.5		11 0, 11 1u, 11 2 (Lyb)
290	2	4.26. br	52.1. aC	H-3a, H-3b, NH		H-3a, H-4, NH, NH (Ahp)
	- 3a	2.00. m	29.0, CH ₂	H-2, H-3b, H ₂ -4		H-2
	3b	1.41. m		H-2, H-3a, H ₂ -4		NH
	4	1.23, m (2H)	$22.1, CH_2$	H-3a, H-3b, H ₂ -5		H-2
	5	1.47, m (2H)	26.3, CH ₂	H ₂ -4, H ₂ -6		
	6	2.71, m (2H)	38.6, CH ₂	H ₂ -5		
	NH	8.44, d (8.4)		H-2	1 (Thr)	H-2, H-3b, H-2 (Thr), H-3 (Thr),
						NH (Thr)
	NH_2	7.60, br s (2H)				
Thr	1		169.3, qC			
	2	4.59, dd (10.2, 6.5)	56.3, CH	H-3, NH	1 (Val-2)	H-3, H-4, NH (Lys), NH (Val-2)
	3	5.49, br q (6.5)	71.7, CH	H-2, H ₃ -4	4, 1 (Val-1)	H-2, NH (Lys)
	4	1.20, d (6.5)	$17.7, CH_3$	H-3	2, 3	H-2
	NH	7.80, d (10.2)		H-2	1	NH (Lys)
Val-2	1		172.4, qC			
	2	4.31, dd (9, 7.1)	57.6, CH	H-3, NH	1	H-3, NH, H ₃ -4 (Ba)
	5	2.01, m	30.0, CH	H ₃ -4, H ₃ -5	2	H-2
	4	0.83, 0(7.0)	19.5, CH ₃	H-3	2	
	Э NH	0.62, 0(7.0)	18.1, CH ₃	H-3 H-2	\mathcal{L} 1 (D ₂)	$\mathbf{H} = \mathbf{H} = (\mathbf{T}_{\mathbf{h}}) \mathbf{H} = \mathbf{H} = (\mathbf{D}_{\mathbf{h}})$
Po	1NH	1.02, U (9)	1725 ~0	п-2	т (Ба)	п-2, п-2 (1пг), н2-2 (Ва)
Da	1	2.16 m (2H)	172.3, qC	Ц. 3	134	H_{1} (Val 2)
	∠ 3	$2.10, III (2\Pi)$ 1.40 m (2H)	180 CU	H ₂ -3	1, 3, 4	113-4, INFI (V dI-2)
	5	$1.49, 111 (2\Pi)$ 0.84 t (7.5)	13.6 CH	H_{2-2} , H_{3-4}	1, 2, 4 2 3	$H_{2} = 2 H_{2} (V_{2} = 1.2)$
-	+	0.04, ((7.5)	15.0, CH3	112-3	2, 3	112-2, 11-2 (V a1-2)

^{*a*} Recorded at 500 MHz. ^{*b*} Protons showing HMBC correlations to the indicated carbon (600 MHz). ^{*c*} Refers to nuclei within the same unit unless indicated otherwise. ^{*d*} Interchangeable. No HMBC correlations observed. Carbons assigned on the basis of remaining unassigned signals in the ¹³C NMR spectrum.

993.4660). Five doublet NH proton signals in the amide range ($\delta_{\rm H}$ 7.34, 7.68, 7.80, 7.82, 8.44) and one broad singlet for two primary amide protons ($\delta_{\rm H}$ 7.60) in the ¹H NMR spectrum suggested that **2** was a peptide. ¹H NMR, ¹³C NMR, HSQC, COSY, and TOCSY analysis revealed seven amino acid spin systems, one carboxylic acid unit, one *N*-Me ($\delta_{\rm H}$ 2.72 s, $\delta_{\rm C}$ 30.2), an *O*-Me group ($\delta_{\rm H}$ 3.74 s, $\delta_{\rm C}$ 56.1), and a 1,3,4-trisubstituted phenyl ring (Table 2). Further NMR including HMBC and ROESY analysis confirmed the

presence of two valine units, threonine, isoleucine, lysine, *N*,*O*-dimethyl-3'-bromotyrosine, Ahp, and butanoic acid (Ba) moieties and provided the planar structure for **2** (Table 2). The most unusual structural feature of **2** is arguably the brominated tyrosine residue, which was recently also found in largamides D, F, and G,¹¹ symplocamide A,¹² and pompanopeptin A,¹³ while other compounds such as scyptolin A¹⁴ and cyanopeptolin 954¹⁵ are chlorinated at this position.

Table 3. Protease Inhibitory Activity (IC_{50}) from Metabolites Isolated from the *Lyngbya* sp. from Kemp Channel

	elastase	chymotrypsin	trypsin
kempopeptin A (1)	$320 \pm 70 \text{ nM}$	$2600 \pm 100 \text{ nM}$	>67 000 nM
kempopeptin B (2) lyngbyastatin 7^a	>6/000 nM 8.3 ± 5.4 nM	>67000 nM 2500 ± 200 nM	$8400 \pm 200 \text{ nM}$ > 30 000 nM
somamide B^a	9.5 ± 5.2 nM	$4200 \pm 500 \text{ nM}$	>30 000 nM

^a Taken from ref 5.

A combination of UV-based Marfey's¹⁰ (Lys, Thr, Val), LC-MS-based advanced Marfey's¹⁶ (*N*,*O*-diMe-Br-Tyr), and chiral HPLC (IIe) analysis established the L-configuration of these amino acids, while the 3S,6R configuration of the Ahp unit was ascertained as described for 1.

Many Ahp-containing cyclodepsipeptides isolated from cyanobacteria are known inhibitors of serine proteases such as elastase, chymotrypsin, and trypsin.^{2,12} Thus, we determined the inhibitory activity of compounds 1 and 2 against these three enzymes. Kempopeptin A (1) inhibited elastase with a slight selectivity over chymotrypsin; conversely, kempopeptin B (2) inhibited only trypsin activity (Table 3). These results are in accordance with previous crystallographic and structure-activity relationship data, suggesting that the amino acid residue between Thr and Ahp binds to the enzyme's specificity pocket and thus plays an important role in determining the selectivity toward serine proteases.¹² A hydrophobic amino acid at this position commonly confers preference for chymotrypsin and elastase inhibition (Leu in 1), while a basic amino acid such as lysine or arginine is necessary for trypsin inhibition (Lys in 2). Our IC_{50} value for 2 against trypsin closely corresponds to data reported for the related lysine-containing metabolite micropeptin SD944 $(8.0 \ \mu g/mL).^{8}$

The activity of 1 was comparable to those observed for oscillapeptin G,9 scyptolin A,17 and planktopeptins BL1125 and BL1061,¹⁸ all of which contain Leu in the cyclic core at this position; however, the Phe residue is replaced by Thr. The different degrees of Tyr modification (chlorination or O-methylation) in these related compounds and substitution of Val for Ile in the planktopeptins likely do not affect protease-inhibitory activity significantly. In lyngbyastatin 7 and somamide B, a 2-amino-2-butenoic acid (Abu) unit presumably occupies the specificity pocket, while all other core residues are the same as in 1.5 This allows direct comparison of their activities. Since the side-chain composition is less important for activity as long as at least two residues flank the cyclic core,⁵ the Leu \rightarrow Abu change within the core structure seems to increase elastase-inhibitory activity but does not enhance chymotrypsin-inhibitory activity (Table 3). A postulated stabilization of the ethylidene moiety by CH/π interaction may be responsible for the potent elastase activity,¹⁹ leading to more pronounced selectivity of lyngbyastatin 7 and somamide B for both proteases compared with 1 (Table 3).

Because a minority of related Ahp-containing compounds such as symplocamide A^{12} has been described to also possess cytotoxic activity, we assessed the effects of compounds **1** and **2** on the proliferation of cancer cells. Both compounds did not significantly affect the growth of HT29 colon adenocarcinoma cells at the highest concentration tested (50 μ M) by MTT-based cell viability assessment.

The discovery of four different protease inhibitors with three distinct selectivity profiles from a single homogeneous cyanobacterial collection illustrates the potential of cyanobacteria to execute their own combinatorial biosynthesis and structure optimization. While the role of these protease inhibitors in Nature is not fully understood, a defensive function against other microorganisms or consumers is probable.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a Perkin-Elmer 341 polarimeter. UV spectra were recorded on a SpectraMax M5 (Molecular Devices). ¹H, ¹³C, and 2D NMR spectra equipped with a ThermoFinnigan LCQ by ESI (positive mode). **Biological Material.** *Lyngbya* sp. was collected from a mangrove channel at the northern end of Kemp Channel near Summerland Keys (Florida Keys) in May 2006. A morphological characterization including cell measurements was provided with our report of the isolation of lyngbyastatin 7 and somamide B from the same organism.⁵ A specimen preserved in formalin has been retained at the Smithsonian Marine Station.

ion source detector. LC-MS data were obtained using an Agilent 1100

Extraction and Isolation. The freeze-dried organism was extracted with CH₂Cl₂—MeOH (1:1). The resulting lipophilic extract (24.1 g) was partitioned between hexanes and 20% aqueous MeOH, the methanolic phase was evaporated to dryness, and the residue was further partitioned between *n*-BuOH and H₂O. The *n*-BuOH layer was concentrated and subjected to chromatography over silica gel using CH₂Cl₂ and increasing gradients of *i*-PrOH (2, 5, 10, 20, 50 to100% *i*-PrOH) followed by 100% MeOH. The fraction that eluted with 50% *i*-PrOH was then applied to a C₁₈ SPE cartridge and elution initiated with H₂O followed by aqueous solutions containing 25, 50, 75, and 100% MeOH. The fractions eluting with 75% aqueous MeOH were then subjected to semipreparative reversed-phase HPLC (YMC-pack ODS-AQ, 250 × 10 mm, 2.0 mL/min; UV detection at 220 and 254 nm) using a MeOH-H₂O linear gradient (50–100% for 60 min and then 100% MeOH for 10 min), yielding compound **1**, *t*_R 30.2 min (1.0 mg).

The fraction that eluted with 100% MeOH from silica gel was subjected to Si SPE cartridge and elution started with CH₂Cl₂ followed by CH₂Cl₂ mixtures containing 20, 40, 60, and 80% MeOH and then 100% MeOH. The fraction eluting with 20% methanolic CH₂Cl₂ was then applied to a semipreparative reversed-phase HPLC column (YMC-Pack ODS-AQ, 250 × 10 mm, 2.0 mL/min; UV detection at 220 and 254 nm) using a MeOH–H₂O (0.05% TFA) linear gradient (60–100% for 40 min and then 100% MeOH for 15 min). The fraction that had eluted with 100% MeOH from silica gel yielded compound **2**, *t*_R 25.2 min (1.6 mg).

Kempopeptin A (1): colorless, amorphous powder; $[α]^{20}_D - 45$ (*c* 0.05, MeOH); UV (MeOH) λ_{max} (log ε) 210 (3.66), 280 (sh) (2.67); IR (film) 3374 (br), 2958, 2924, 1735, 1655 (br), 1541, 1449, 1257, 1203, 1139 cm⁻¹; ¹H NMR, ¹³C NMR, HMBC, and ROESY data, see Table 1; HRESI/APCIMS *m*/*z* [M + Na]⁺ 1013.4965 (calcd for C₅₀H₇₀N₈O₁₃Na, 1013.4960).

Kempopeptin B (2): colorless, amorphous powder; $[α]^{20}_D - 18$ (*c* 0.16, MeOH); UV (MeOH) $λ_{max}$ (log ε) 210 (3.80), 280 (sh) (3.12); IR (film) 3356 (br), 2926, 1738, 1736, 1658 (br), 1530, 1442, 1257, 1205, 1139 cm⁻¹; ¹H NMR, ¹³C NMR, COSY, HMBC, and ROESY data, see Table 2; HRESI/APCIMS *m*/*z* [M + H]+ 993.4663 (calcd for C₄₆H₇₄⁷⁹BrN₈O₁₁, 993.4660), 995.4656 (calcd for C₄₆H₇₄⁸¹BrN₈O₁₁, 995.4640), 1:1 ion cluster.

Acid Hydrolysis and Amino Acid Analysis by Modified Marfey's Method. Samples (~100 μ g) of compounds 1 and 2 were subjected to acid hydrolysis at 110 °C for 24 h and analyzed using an L-FDLA-based Marfey's¹⁰ procedure as described.⁵ The retention times ($t_{\rm R}$, min) of the L-FDLA-derivatized amino acids in the hydrolysate of compound 1 matched those of L-Thr (14.4), L-Val (24.7), L-Phe (29.6), L-Pro (19.7), L-Leu (28.8), and N-Me-L-Tyr (42.1). Conversely, the L-FDLA derivatives (t_R, min) of L-allo-Thr (15.6), D-Thr (20.5), D-allo-Thr (17.1), D-Val (33.9), D-Phe (36.7), D-Pro (23.1), D-Leu (39.5), and N-Me-D-Tyr (43.8) were not detected in the hydrolysate (retention times given for standard amino acids). The retention times $(t_{\rm R}, \min)$ of the derivatized amino acids in the hydrolysate of compound 2 corresponded to those of L-Thr (14.4), L-Val (24.7), L-Lys (40.5), and L-Ile/L-allo-Ile (27.0); the latter had the same retention times, requiring chiral HPLC analysis of the acid hydrolysate (see below). Peaks for L-FDLA derivatives of the corresponding isomers were not detected (t_R, min): L-allo-Thr (15.6), D-Thr (20.5), D-allo-Thr (17.1), D-Val (33.9), D-Lys (42.5), D-Ile/D-allo-Ile (37.2). N,O-diMe-Br-Tyr adducts could not be reliably detected using this UV-based method, so LC-MS was used instead (see below).

Oxidation-Acid Hydrolysis-Marfey's Analysis Sequence for 1 and 2. CrO₃ oxidation of 1 and 2 followed by acid hydrolysis was carried out as described.^{4,5} The resulting hydrolysates were derivatized with L-FDLA and aliquots subjected to reversed-phase HPLC using UV detection as above. When compared to the Marfey profiles without prior oxidation, the HPLC profiles derived from both compounds 1 and 2 showed one new peak for L-Glu (t_R 16.8 min), but not D-Glu (t_R 17.8 min).

Chiral HPLC Analysis for 2. Due to overlap of L-FDLA adducts of L-Ile and L-allo-Ile during Marfey's analysis, the acid hydrolysate derived from 2 was subjected to chiral HPLC analysis (column, Phenomenex Chirex phase 3126 N,S-dioctyl-(D)-penicillamine, $4.60 \times$ 250 mm, 5 μ m; solvents, 2 mM CuSO₄ in H₂O-MeCN (95:5) or 2 mM CuSO₄; flow rate 1.0 mL/min; detection at 254 nm). The absolute configuration of Ile in the hydrolysate of 2 was determined to be L-Ile by direct comparison with the retention times of authentic standards, while the configurations of the other amino acids obtained from Marfey's analysis were confirmed. The retention times $(t_{\rm R}, \min)$ for standard amino acids were as follows: L-Val (16.6), D-Val (21.8), L-Ile (40.8), D-Ile (52.0), L-allo-Ile (34.6), D-allo-Ile (43.1) (solvent mixture 95:5); L-Lys (5.2), D-Lys (6.4), L-Thr (10.8), D-Thr (13.6), L-allo-Thr (15.1), and D-allo-Thr (17.8) (solvent 2 mM CuSO₄).

Advanced Marfey's Analysis of 2. The hydrolysate of compound 2 was derivatized with L-FDLA and analyzed by LC-MS according to the advanced Marfey's method¹⁶ to reveal the L-configuration of N,OdiMe-Br-Tyr in $\mathbf{2}$ as described.¹³

Protease Inhibition Assays. Inhibitory activity against bovine pancreatic α -chymotrypsin and porcine pancreatic elastase and trypsin was determined as reported earlier.5

Acknowledgment. This Note was developed under the auspices of the Florida Sea Grant College Program with support from NOAA, Office of Sea Grant, U.S Department of Commerce, Grant No. NA06OAR4170014. The authors gratefully acknowledge NSF for funding through the External User Program of the National High Magnetic Field Laboratory (NHMFL), which supported our NMR studies at the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility in the McKnight Brain Institute of the University of Florida (UF). The 600 MHz 1 mm triple-resonance HTS cryogenic probe was developed through collaboration between UF, NHMFL, and Bruker Biospin. We thank J. Rocca for assistance in obtaining NMR data and S. Matthew for providing a synthetic standard of N,O-dimethyl-L-bromotyrosine. HRMS analyses were performed at the UCR Mass Spectrometry Facility, Department of Chemistry, University of California at Riverside. LC-MS analyses were carried out by J. V. Johnson at the Spectroscopy Services, Department of Chemistry, UF. This is contribution 735 from the Smithsonian Marine Station at Fort Pierce.

References and Notes

- (1) Tan, L. T. Phytochemistry 2007, 68, 954-979.
- (2) Itou, Y.; Ishida, K.; Shin, H. J.; Murakami, M. Tetrahedron 1999, 55, 6871-6882.
- (3) Turk, B. Nat. Rev. Drug Discovery 2006, 5, 785-799.
- (4) Matthew, S.; Ross, C.; Rocca, J. R.; Paul, V. J.; Luesch, H. J. Nat. Prod. 2007, 70, 124-127.
- (5) Taori, K.; Matthew, S.; Rocca, J. R.; Paul, V. J.; Luesch, H. J. Nat. Prod. 2007, 70, 1593-1600.
- (6) Harada, K.; Mayumi, T.; Shimada, T.; Suzuki, M. Tetrahedron Lett. **1993**, 34, 6091–6094.
- (7) Nakano, Y.; Shirai, M.; Mori, N.; Nakano, M. Appl. Environ. *Microbiol.* **1991**, *57*, 327–330. (8) Reshef, V.; Carmeli, S. *Tetrahedron* **2001**, *57*, 2885–2894.
- (9) Fujii, K.; Sivonen, K.; Naganawa, E.; Harada, K. Tetrahedron 2000, 56, 725-733.
- (10) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.
- (11) Plaza, A.; Bewley, C. A. J. Org. Chem. 2006, 71, 6898-6907.
- (12)Linington, R. G.; Edwards, D. J.; Shuman, C. F.; McPhail, K. L.; Matainaho, T.; Gerwick, W. H. J. Nat. Prod. 2008, 71, 22-27.
- Matthew, S.; Ross, C.; Paul, V. J.; Luesch, H. Tetrahedron 2008, 64, (13)4081-4089
- (14) Matern, U.; Oberer, L.; Falchetto, R. A.; Erhard, M.; König, W. A.; Herdman, M.; Weckesser, J. Phytochemistry 2001, 58, 1087-1095.
- (15) von Elert, E.; Oberer, L.; Merkel, P.; Huhn, T.; Blom, J. F. J. Nat. Prod. 2005, 68, 1324-1327.
- (16) (a) Fujii, K.; Ikai, Y.; Mayumi, T.; Oka, H.; Suzuki, M.; Harada, K. I. Anal. Chem. 1997, 69, 3346-3352. (b) Fujii, K.; Ikai, Y.; Oka, H.; Suzuki, M.; Harada, K.-I. Anal. Chem. 1997, 69, 5146-5151.
- (17) Matern, U.; Schleberger, C.; Jelakovic, S.; Weckesser, J.; Schulz, E. G. Chem. Biol. 2003, 10, 997-1001.
- (18) Grach-Pogrebinsky, O.; Sedmak, B.; Carmeli, S. Tetrahedron 2003, 59, 8329-8336.
- (19) Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. Tetrahedron 1995, 51, 8665-8701.

NP8002172